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The recursion method of a linear operator inversion 11 
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Abstract. In the second part of the present series we describe the sparse-matrix version of 
the Born series generalisation. 

1. Introduction 

In paper I (Znojil 1976), we investigated the generalised power series expansion of 
the resolvent operator & ( E ) =  (E-&)-'  inspired by Haydock (1974) and not 
employing any scalar product definition. It was based on the parametrisation of action 
fi on the vector IX,) E K ,  the parameters being considered elements of a Hessenberg 
matrix Q. Appropriate linear combinations of the vectors  XI), f iIXl) ,  . . . , f iklX1) 
with the coefficients constructed by means of the matrix Q were denoted as lxk). 

Intended to be as simple and 'non-numerical' as possible, they represented an 
adequate set for expansion of the vectors I y k )  = &(~)Ixk), k 3 I .  

Later (Znojil 1977, denoted as I u )  we suggested another parametrisation of this 
type employing Q in the quasitridiagonal (block-tridiagonal) form. Further general- 
isation of Q was not investigated at the time because of an abrupt increase in 
complexity of the general formulae for I Y k ) ,  k > 1. 

Fortunately, the practical calculations rarely demand the full knowledge of the 
operator &(E).  Since the next generalisation using the quasi-Hessenberg Q would be 
best suited to the construction of 'non-numerical' vectors IXk), we accept this form in 
the present paper while restricting our attention to the expansion of & ( E )  acting on 
some finite group of vectors IX: ) ,  IX?),  . . . , I X p l )  only. It will be shown that due to 
this restriction, the resulting formulae preserve the simplicity of the previous versions 
of the method, especially the use of only one infinite ( N + m )  auxiliary sequence 
Fk(E), k = N, N - 1, N - 2 ,  . . . , 1, calculated in a recurrent way (62). 

The choice of the free parameters Q is quite arbitrary-hence the flexibility of the 
method. The required knowledge of fi is minimal-it concerns its action on suitable 
IX', )'s and does not embody scalar product, orthogonality or any properties of the 
conjugated operator A'. Hence, the iteration represents in general the only possible 
test of convergence. It is of fundamental importance that such a test may be per- 
formed within the framework of the formalism (63). In addition, some important 
relations between convergence and the spectral properties of fi and Q are illustrated 
in appendix 1. 

tPresent  address: Institute of Nuclear Physics, Czechoslovak Academy of Sciences, CS 250 68 Rez, 
Czechoslovakia. 
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An important feature of the method is the double indexing of the expansion set 
IX,”), m = 1 , 2 , .  . . , Mk <CO, k = 1 , 2 , .  . . , N, N +CO with variable Mk (the number of 
vectors in the kth subset or partition). This is important in the applications: in 04, we 
illustrate this by the quick and exact evaluations of the matrix elements of Kohler’s 
kernel of the Bethe-Goldstone equation used in the Brueckner theory of finite nuclei. 
At the same time, this example shows how any sparse matrix fi  (having finite number 
of non-zero elements in each row) may be related to the quasi-Hessenberg Q (and 
only to this form in general) by a simple permutation of the basis. 

There are always restrictions on applicability of any method. Here, together with 
the points of the spectrum of fi, we must avoid another set of ‘dangerous’ values of E. 
There are two ways of doing this discussed in appendix 2. 

2. The method 

Let us assume that we have the set of M1 initial states \ X i  )E K ,  i = 1 , 2 ,  . . . , M1 such 
that the action of fi on them is given as finite linear superposition 

employing another M2 simple states IX;)E K ,  i = 1 , 2 ,  . . . , M2.  The freedom in the 
choice of coefficients AT, By (M2#M1) is intended to enable us to repeat the 
introduction of new and simple states in a recurrent way, 

p ( k ) s  k - 1, k 2 1. ( 2 )  

Since we do not want to employ orthogonality of /X )’s, all C’s may be non-zero even 
for the Hermitian I?. For p ( k ) =  1 and Mk = Mk+l = M,  formula ( 2 )  coincides with the 
definition given in Ia. For p ( k )  = k - 1 and Mk = 1, we arrive at the method of I. 

In order to keep the structure of formulae as clear as possible, we simplify slightly 
the notation omitting the upper indices in IX;), A;, . . . and assuming the summation 
conventions of usual matrix multiplication. Formula (2) may thus be written as 

where the (partitioned) matrix Q is composed of blocks A, B, C. In  this way, 
intertwining ( 3 )  and the product decomposition 
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= \ o  . . .  
I 

(4) 

form the fundamental idea of the present method-the initialisation LN = 0, UN(O) = 
A N  - EI and the recurrence relations 

Uj(i) = C,(i,-LjUj+l(i+l), i =  1,2,. . . , j - l ,  

L,-1= Bj-lUi(&, (5  1 
Uj-l(O)= Ai-1 -EI-Lj- iUj( l ) ,  j = N , N - l , .  . . , 2  

define the unknown quantities in (4) for N + CO. The serious question of existence and 
uniqueness of the limit N + CO is not discussed here because it depends on the more 
specific assumptions about Q which will not be considered here (cf I). 

Let us formally proceed in analogy with I, Ia. We define the general expansion of 
g ( E )  in the form of an ansatz 

that is, 
10 

l y k ) =  E D ( k ) r I X r )  
r = 1  

and obtain the set of (matrix) equations 

for the expansion coefficients connected with the submatrices of (E-Q) - '  in an 
obvious way. 

We intend to solve (7) in terms of only one infinite (N+co) matrix sequence 
F k ( E ) =  - U&). It is easy to verify that this fundamental sequence is defined (cf (5) 
and I, Ia) by the matrix recurrence formula 

m .. - 1  

with j decreasing from infinity to one. In practice, the dimension cut-off is assumed. 
For the initialisation 

FN+l(E)=FN+2(E)=. . . = o  (9) 
we shall write Fk(E) = Fk(E, N )  and assume again the limit N + 00 to be well defined. 

Here, the completeness of analogy with I, Ia breaks down-we do not have the 
matrices B;' at our disposal and the full and closed solution of (7) for N + CO may 
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therefore be defined in terms of the set of infinite sequences uk(l), uk(2), . . . only. I t  
may be shown that using Fk’s, we may define by a finite number of operations the 
solutions D(k)j of (7) for k = 1 only. In this case, we obtain the partial result, expansion 
( 6 ) o f / Y y ) , m = 1 , 2  , . . . ,  M1with 

D(k)i = D(k)i-iBi-iFi, I > k ,  D(i)i = FI (10) 

equivalent to I or Ia. With respect to the variability of MI, this is in fact all we need in 
practice. When using the finite cut-off N (initialisation (9) of Fk(E, N ) ) ,  we denote 
also D(k)j(E) = D(k)j(E, N )  in (10). 

3. The iterative prescription 

The restricted solvability of (7) in terms of the sequence Fk may be understood by 
realising that the iterated use of ( 2 )  defines uniquely Mk vectors BklXk+l) only: for 
Mk+l>Mk, the specific choice of separate Mk+l-Mk vectors I X ~ + ~  ) is arbitrary, and 
hence also the very definition of d ( E ) l X l + ~  ) and a ( k + l ) j .  

In this sense, we may try to solve the set of equations (7) in terms of Fk’s for the 
appropriately ‘dimension-reduced’ matrices of the form @ k D ( k + l ) j  choosing the 
simplest matrices @ k  which allow such a solution. After straightforward though rather 
lengthy algebra we obtain the result 

@ k  = D(i)k(E, k)Bk, 

@ k D ( k +  I),(E, N )  = D(I)I(A!?, N ) -  D(i)i(E, k ) ,  

0 0  = I ,  

(1 1) 

@ k D ( k + l ) k + l ( E ,  N ) =  D(l)k+l(E, N ) ,  1 s l s k s N s c o  

which may be verified by direct insertion into (7). The connection of the ‘reduction’ 
matrix @ k  with the ‘cut-off’ sequence F,(E, k )  has an important consequence: using 
the exact identity 

and the iterative increase of the parameters k ,  j (convergence test), we may arrive at 
the reliable choice of the cut-off N = j >> k = 1, N < CO in the practical application of 
expansion (6 )  of 1 Y’, ). 

Obviously, for k f k + l =  Mk and det Bk f 0, k 2 1, a ‘non-reduced’ form of (1 l), (12) 
may be given. Since the multiplication by Bi’enables us to calculate D(k+l)j, j s  k 
directly from the second line in (7), it suffices to replace the third line in (1 1) by 

Multiplication of (12) by @ ; A l  provides 

which represents a restoration of full analogy with I in this special case. 
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4. An application in nuclear theory 

In Brueckner theory, the Bethe-Goldstone equation has the kernel 

where T is kinetic energy, w a parameter and 4 the Pauli projector (Baranger 1969). 
One of the main technical problems of its exact solution is the evaluation of the matrix 
elements of ?I in the double harmonic oscillator basis l n l l l )  In212) .  Taking into account 
the action of the differential operator T and the definition of 4 we simply put 

lx;)+ ( K I K ~ I X : ) ’ ( K I ~ I K ~ ~ ~ I X : )  = R n l + i , . l l ( K l ) R n 2 + i z , I z ( K 2 ) ,  

i = n l  + 1, k = n 2 +  i l  + 1, 

where oscillator functions R , [ ( K )  of the impulse K in the Ith partial wave are defined in 
I .  Different choices of i l  > 0, i 2  2 0 lead to different Pauli projectors 4 and correspond 
therefore to different nuclei (cf table 1: F = 1 for 4He, F = 2 for l 6 0  and F = 3 for 

Ca). The resulting matrix Q is quasitridiagonal (Go.) = 0, j S 2) and has growing 
partitions (e.g. Mk = k for i l  = i 2  = 0). 

For matrix elements of ?I needed in some M-dimensional space spanned by the 
orthogonal vectors IX;) ,  we redefine the partitioning of Q ( M i  = 

M I  +M2 + . . . + M n  > M, M;+I  = Mn+i) and pick up a sufficiently large cut-off N to 
obtain the desired accuracy. The high rate of convergence with respect to N and the 
low computer storage demands ( = c c a N 2 ,  to be compared with -N4 for general 
matrix Q with dimension M I  +. . . + M N )  are demonstrated in table 1 where the error 
of ( X i  l%lX; ) in the last column is comparable with the computer precision. This was 

40 

Table 1. Convergence of the lowest non-trival matrix elements of the exact propagator ?[ 
with the cut-off N. 

N 

0 0 0 0 0  
1 1 1,2 
2 2 3  

1 0 0 0 0  
0 1 1  
1 1 2  

2 0 0 0 0  
0 1 1  

1 1 1 1 2  
2 1 0 0 0 , l  

0 1 2  
1 1 3  

2 2 1 1 3  

0.321 155 
0.155 234 
0.102 423 
0.247 661 
0.175 671 
0.136 281 
0.200 455 
0.149 184 
0.121 138 
0.167 922 
0,131 968 
0.108 756 
0.098 565 

0.321 195 
0.155 256 
0102 440 
0.247 679 
0.175 685 
0,136 296 
0.200 463 
0.149 190 
0.121 148 
0.167 926 
0.131 972 
0.108 762 
0.098 569 

0.321 198 
0.155 258 
0,102 441 
0.247 680 
0.175 686 
0.136 297 
0.200 464 

0.121 149 
0.167 926 
0.131 973 
0.108 762 
0.098 569 
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independently tested by remultiplication by the original sparse matrix q*(T +w)q*. It 
should be noted that the numerically stable calculational procedure is very similar to 
that used in I for approximate %-we 'scale' the matrices F k  + F k  = p k F k  by the 
number P k  a POk = i l  + i2  + k in recurrence relation (8). 

5. Conclusions 

There are two aims of the Born series parametric (polynomial) rearrangement: 
( a )  simplification of the individual members of the expansion; 
( b )  possible acceleration of convergence. 

( a )  the freedom to write AI&) as a superposition of an arbitrary finite number of 

( 6 )  the knowledge of a sparse matrix representation of fi. 
( a )  Q is varied to construct the simplest set I & ) ,  or 
( b )  the orthnormalised basis is varied to obtaih the special form of Q. 

Both may be met using the present prescriptions together with: 

components I X k + l ) r  or 

Thus, either 

We summarise that in the case ( a ) ,  the iterative formulae represent the direct 
generalisation of the standard identities 

corresponding in the case of the simplest Q (Haydock 1974) to the technique of § 3 
and appendix 2, respectively. In the q*Tq* example presented, we have seen both the 
seminumerical structure (fixed analytic basis, calculated expansion coefficients) of the 
typical ( a )  approach application of non-trivial 0, and the pure numerical algorithm 
based on the ( b )  approach, very efficient (compared, for example, to the Gauss 
elimination) in the cases where we are interested in some submatrix of the whole 
resolvent matrix. 

Appendix 1 

When compared with the usual Born series, the domain of convergence of the present 
expansion (6)  may be larger. We may illustrate this by an example with M k  = M = 1. 
Let us write 

where / A )  are eigenvectors of fi. The definition (2) may be shown to lead to 

('42) 
k - 1  ( k - 1 )  

a A ( k ) =  aA(l)(- 1) A1 ( h ) / ( B 1 B 2  . . . B k - l ) ,  k 2 2  

where A'k"(E) denotes determinant of the submatrix of Q -E,  

E s k .  ('43) 

0 k k - E  Q k k + i . .  . Qki 

A(kl)(E) = det 

[ i l k  . . .  Qn - E  
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Since 
hL"(E)= (- l)"-k"/(Fk(E, N)Fk+l(E, N ) .  . . FN(E, N ) )  ('44) 

the residual term in (12)  is, for k = 1 ,  equal to 

and should approach zero for N + CO. This may be achieved either for diminishing 
ratio A$"(A)/A(IN'(E) (it works in Born series for / / \ /El< 1)  or by demanding 
AiN)&)+ 0, N + CO for 'inconvenient' Ai's  (compare with the acceleration of con- 
vergence of the Born series by the special choice of vector IXl) with = 0). The 
limit A\"@) = 0 may also be guaranteed for all A ' s  by Q chosen as matrix elements of 
fi in an arbitrary basis. 

Appendix 2 

Definition (8) of the fundamental sequence Fk(E) has the structure of the matrix 
continued fraction. Therefore, the inversion (Fi'  )-' must be well defined, det Fi '  # 
0, k 3 1 .  Vice versa, for E =Eo such that there exists k = i o >  1 ,  det Fi,' = 0, the 
sequence Fk(Eo),  k < io cannot be defined (some examples of such a 'pathological' 
behaviour may be found e.g. in Wilkinson 1965). 

The first solution of this problem is based on the arbitrariness of h f k  and consists in 
repartitioning of Q. This represents one of the significant advantages of the present 
method and needs no further comment. 

In this appendix, we give another method, applicable when the partition 
redefinition is not desirable since Mk = M is fixed. Then we may assume det Bk # 0 
and introduce formally the matrices r k ( i )  by the prescription 

rk(- i )=Bk,  r k ( i ) =  rk(i-l@i!.jFL:i, k > i .  ('46) 

rk(i)=F;'B;'lF;',B;'2. . . F-i:i+iBiAiFi?i, i 3 0  ('47) 

ri(?k-i)rk(k-j-l@T1 =FiBi. . . 4-1Bj-14, O < i < j  ('48) 

They have the properties 

which follow easily from the definition. It is important that for k = io, det Fi,' = 0, the 
initialisation rb(o) = Fi,' may be used to define the sequence 

. . . Fb+2, Fb+1, rb(o), ria(l), . . . , rb(i0-i) 

instead of Fk 's by using the following recurrence relation: 
k - m - 1  

i = l  
r k ( k - m ) =  - Ck(k-m)-rk(k-m-i@m' ( A m  - E l ) -  1 rk(k-m-i-l@;:iCm+i(i) 

W 

It is also easy to prove that the expansion coefficients in 
of the new sequence 

{ F k } i I r l  v { r ~ ( k ) } ~ ~ ~ - '  

m = k - 1 ,  k - 2 , .  . . ,1  

('49) 
(6 )  may be redefined in terms 
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e.g. in the case of (lo), we obtain the relations 

D(i)k(E, N ) =  rii io-i)(E, N)Dk(E,  N ) ,  

The inversion of the rio(io-l) matrix necessarily exists for det(Q - E )  # 0, N <CO, since 
the relation 

io- 1 

i = l  1 =lo+ 1 
det(Q - E )  = (- l)MN( n det Bi) det rio(io-l)(, E det Fi)-’ 

follows directly from the decomposition (4) and (A7). 
The occurrence of the singularity of the type det F,’ + 0, E +Eo is connected with 

the accidental zero of the subdeterminant of Q - E for some values of the parameter 
E = Eo. Because of the continued fraction structure of the definition of Fk’s,  usually a 
small repartitioning is suficient-considering the simple one-dimensional example we 
see that only (Mio = l)+ (Mio = 2) is needed. The restoration of the Fk sequence may 
therefore be possible after a few ‘intermediate’ terms rlo(io-i), i o s j  < i l  within the 
sequence Fk. Such a possibility occurs for some il  > 1 such that det rio(io-il) # 0. Then 
the identities 

etc may be inserted into definition (8) which generates Fk, i l  2 k 3 1. In such a way, 
the restoration is completed. 

Putting formally io = N, i l  = 0 ,  the whole auxiliary sequence { r N ( k ) } L ~ ~ - l  may be 
used instead of {Fk}::;. Recurrence (A9) and formulae (A10) may represent the 
alternative version of our expansion of the resolvant operator while the iteration 
formula may read 

N 

B N l  y N + 1 ) =  - 1 r N ( N - i - l ) ( E j  NIB;’ I x i ) + r N ( N - l ) ( E ,  N)I yl). (A121 
i = l  

At present, we do not encourage the use of this alternative scheme for ‘physical’ fi 
since our experience strongly supports the continued fraction approach. The r- 
generated ‘polynomial’ formulae do not seem to have a ‘perturbative’ character and 
should be more thoroughly investigated in the future. 
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